using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ErrorAnalysis.Service { public class Utility { /// /// 单线性插值法 /// /// 插值 /// 起始值 /// 起始值对应值 /// 结束值 /// 结束值对应值 /// 插值对应结果 public static double Interpolate(double value, double x0, double y0, double x1, double y1) { // Calculate the interpolated value using linear interpolation formula double y = y0 + (value - x0) * (y1 - y0) / (x1 - x0); return y; } public static (double slope, double intercept) FitLine(PointF[] points) { // 计算各求和项 int n = points.Length; double sumX = 0, sumY = 0, sumXY = 0, sumX2 = 0; foreach (var p in points) { sumX += p.X; sumY += p.Y; sumXY += p.X * p.Y; sumX2 += p.X * p.X; } // 计算斜率和截距 double denominator = n * sumX2 - sumX * sumX; if (Math.Abs(denominator) < 1e-10) // 避免除以0 throw new InvalidOperationException("点集过于集中,无法拟合直线"); double slope = (n * sumXY - sumX * sumY) / denominator; double intercept = (sumY - slope * sumX) / n; return (slope, intercept); } public static double GetLineValue(double x, double slope, double intercept) => slope * x + intercept; public static (double a, double b, double c) FitParabola(PointF[] points) { if (points.Length < 3) throw new ArgumentException("至少需要3个点进行抛物线拟合"); // 1. 计算各项求和值[1,6](@ref) int n = points.Length; double sx = 0, sy = 0, sx2 = 0, sx3 = 0, sx4 = 0, sxy = 0, sx2y = 0; foreach (var p in points) { double x = p.X; double y = p.Y; double x2 = x * x; double x3 = x2 * x; double x4 = x2 * x2; sx += x; sy += y; sx2 += x2; sx3 += x3; sx4 += x4; sxy += x * y; sx2y += x2 * y; } // 2. 构建正规方程矩阵[1,6](@ref) double[,] matrix = { { sx4, sx3, sx2, sx2y }, { sx3, sx2, sx, sxy }, { sx2, sx, n, sy } }; // 3. 使用高斯消元法求解 double[] coefficients = GaussElimination(matrix); return (coefficients[0], coefficients[1], coefficients[2]); } // 高斯消元法实现(带部分主元选择) private static double[] GaussElimination(double[,] matrix) { int n = matrix.GetLength(0); double[] result = new double[n]; // 前向消元 for (int i = 0; i < n - 1; i++) { // 部分主元选择 int maxRow = i; for (int k = i + 1; k < n; k++) { if (Math.Abs(matrix[k, i]) > Math.Abs(matrix[maxRow, i])) maxRow = k; } // 行交换 if (maxRow != i) { for (int j = 0; j <= n; j++) { double temp = matrix[i, j]; matrix[i, j] = matrix[maxRow, j]; matrix[maxRow, j] = temp; } } // 消元过程 for (int k = i + 1; k < n; k++) { double factor = matrix[k, i] / matrix[i, i]; for (int j = i; j <= n; j++) { matrix[k, j] -= factor * matrix[i, j]; } } } // 回代求解 for (int i = n - 1; i >= 0; i--) { result[i] = matrix[i, n]; for (int j = i + 1; j < n; j++) { result[i] -= matrix[i, j] * result[j]; } result[i] /= matrix[i, i]; } return result; } public static (double a, double b, double c) quadraticLine(double[] arrX, double[] arrY) { double[] coef = new double[3]; double[,] AA = new double[3, 3]; double[,] TAA = new double[3, 3]; double[,] BAA = new double[3, 1]; double[] B = new double[3]; int m = arrX.Length; double[] arrXp = new double[m]; double[] arrXc = new double[m]; double[] arrXv = new double[m]; double[] y = new double[m]; for (int i = 0; i < m; i++) { arrXp[i] = arrX[i] * arrX[i]; } for (int i = 0; i < m; i++) { arrXc[i] = arrX[i] * arrX[i] * arrX[i]; } for (int i = 0; i < m; i++) { arrXv[i] = arrX[i] * arrX[i] * arrX[i] * arrX[i]; } double a1 = mysum(arrX); double a2 = mysum(arrXp); double a3 = mysum(arrXc); double a4 = mysum(arrXv); AA[0, 0] = m; AA[0, 1] = a1; AA[0, 2] = a2; AA[1, 0] = a1; AA[1, 1] = a2; AA[1, 2] = a3; AA[2, 0] = a2; AA[2, 1] = a3; AA[2, 2] = a4; double[] xy = new double[m]; double[] xxy = new double[m]; for (int i = 0; i < m; i++) { xy[i] = arrX[i] * arrY[i]; } for (int i = 0; i < m; i++) { xxy[i] = arrX[i] * arrX[i] * arrY[i]; } double b1 = mysum(arrY); double b2 = mysum(xy); double b3 = mysum(xxy); B[0] = b1; B[1] = b2; B[2] = b3; TAA = ReverseMatrix(AA, 3); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { coef[i] = coef[i] + TAA[i, j] * B[j]; } } return (coef[2], coef[1], coef[0]); } public static double[,] ReverseMatrix(double[,] dMatrix, int Level) { double dMatrixValue = MatrixValue(dMatrix, Level); if (dMatrixValue == 0) return null; double[,] dReverseMatrix = new double[Level, 2 * Level]; double x, c; // Init Reverse matrix for (int i = 0; i < Level; i++) { for (int j = 0; j < 2 * Level; j++) { if (j < Level) dReverseMatrix[i, j] = dMatrix[i, j]; else dReverseMatrix[i, j] = 0; } dReverseMatrix[i, Level + i] = 1; } for (int i = 0, j = 0; i < Level && j < Level; i++, j++) { if (dReverseMatrix[i, j] == 0) { int m = i; for (; dMatrix[m, j] == 0; m++) ; if (m == Level) return null; else { // Add i-row with m-row for (int n = j; n < 2 * Level; n++) dReverseMatrix[i, n] += dReverseMatrix[m, n]; } } // Format the i-row with "1" start x = dReverseMatrix[i, j]; if (x != 1) { for (int n = j; n < 2 * Level; n++) if (dReverseMatrix[i, n] != 0) dReverseMatrix[i, n] /= x; } // Set 0 to the current column in the rows after current row for (int s = Level - 1; s > i; s--) { x = dReverseMatrix[s, j]; for (int t = j; t < 2 * Level; t++) dReverseMatrix[s, t] -= (dReverseMatrix[i, t] * x); } } // Format the first matrix into unit-matrix for (int i = Level - 2; i >= 0; i--) { for (int j = i + 1; j < Level; j++) if (dReverseMatrix[i, j] != 0) { c = dReverseMatrix[i, j]; for (int n = j; n < 2 * Level; n++) dReverseMatrix[i, n] -= (c * dReverseMatrix[j, n]); } } double[,] dReturn = new double[Level, Level]; for (int i = 0; i < Level; i++) for (int j = 0; j < Level; j++) dReturn[i, j] = dReverseMatrix[i, j + Level]; return dReturn; } private static double MatrixValue(double[,] MatrixList, int Level) { double[,] dMatrix = new double[Level, Level]; for (int i = 0; i < Level; i++) for (int j = 0; j < Level; j++) dMatrix[i, j] = MatrixList[i, j]; double c, x; int k = 1; for (int i = 0, j = 0; i < Level && j < Level; i++, j++) { if (dMatrix[i, j] == 0) { int m = i; for (; dMatrix[m, j] == 0; m++) ; if (m == Level) return 0; else { // Row change between i-row and m-row for (int n = j; n < Level; n++) { c = dMatrix[i, n]; dMatrix[i, n] = dMatrix[m, n]; dMatrix[m, n] = c; } // Change value pre-value k *= (-1); } } // Set 0 to the current column in the rows after current row for (int s = Level - 1; s > i; s--) { x = dMatrix[s, j]; for (int t = j; t < Level; t++) dMatrix[s, t] -= dMatrix[i, t] * (x / dMatrix[i, j]); } } double sn = 1; for (int i = 0; i < Level; i++) { if (dMatrix[i, i] != 0) sn *= dMatrix[i, i]; else return 0; } return k * sn; } public static double mysum(double[] XX) { double reout = 0; int mm = XX.Length; for (int i = 0; i < mm; i++) { reout = reout + XX[i]; } return reout; } public static double GetParabolaValue(double x, double a, double b, double c) { return a * x * x + b * x + c; } } }