using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ErrorAnalysis.Service
{
public class Utility
{
///
/// 单线性插值法
///
/// 插值
/// 起始值
/// 起始值对应值
/// 结束值
/// 结束值对应值
/// 插值对应结果
public static double Interpolate(double value, double x0, double y0, double x1, double y1)
{
// Calculate the interpolated value using linear interpolation formula
double y = y0 + (value - x0) * (y1 - y0) / (x1 - x0);
return y;
}
public static (double slope, double intercept) FitLine(PointF[] points)
{
// 计算各求和项
int n = points.Length;
double sumX = 0, sumY = 0, sumXY = 0, sumX2 = 0;
foreach (var p in points)
{
sumX += p.X;
sumY += p.Y;
sumXY += p.X * p.Y;
sumX2 += p.X * p.X;
}
// 计算斜率和截距
double denominator = n * sumX2 - sumX * sumX;
if (Math.Abs(denominator) < 1e-10) // 避免除以0
throw new InvalidOperationException("点集过于集中,无法拟合直线");
double slope = (n * sumXY - sumX * sumY) / denominator;
double intercept = (sumY - slope * sumX) / n;
return (slope, intercept);
}
public static double GetLineValue(double x, double slope, double intercept) => slope * x + intercept;
public static (double a, double b, double c) FitParabola(PointF[] points)
{
if (points.Length < 3)
throw new ArgumentException("至少需要3个点进行抛物线拟合");
// 1. 计算各项求和值[1,6](@ref)
int n = points.Length;
double sx = 0, sy = 0, sx2 = 0, sx3 = 0, sx4 = 0, sxy = 0, sx2y = 0;
foreach (var p in points)
{
double x = p.X;
double y = p.Y;
double x2 = x * x;
double x3 = x2 * x;
double x4 = x2 * x2;
sx += x;
sy += y;
sx2 += x2;
sx3 += x3;
sx4 += x4;
sxy += x * y;
sx2y += x2 * y;
}
// 2. 构建正规方程矩阵[1,6](@ref)
double[,] matrix = {
{ sx4, sx3, sx2, sx2y },
{ sx3, sx2, sx, sxy },
{ sx2, sx, n, sy }
};
// 3. 使用高斯消元法求解
double[] coefficients = GaussElimination(matrix);
return (coefficients[0], coefficients[1], coefficients[2]);
}
// 高斯消元法实现(带部分主元选择)
private static double[] GaussElimination(double[,] matrix)
{
int n = matrix.GetLength(0);
double[] result = new double[n];
// 前向消元
for (int i = 0; i < n - 1; i++)
{
// 部分主元选择
int maxRow = i;
for (int k = i + 1; k < n; k++)
{
if (Math.Abs(matrix[k, i]) > Math.Abs(matrix[maxRow, i]))
maxRow = k;
}
// 行交换
if (maxRow != i)
{
for (int j = 0; j <= n; j++)
{
double temp = matrix[i, j];
matrix[i, j] = matrix[maxRow, j];
matrix[maxRow, j] = temp;
}
}
// 消元过程
for (int k = i + 1; k < n; k++)
{
double factor = matrix[k, i] / matrix[i, i];
for (int j = i; j <= n; j++)
{
matrix[k, j] -= factor * matrix[i, j];
}
}
}
// 回代求解
for (int i = n - 1; i >= 0; i--)
{
result[i] = matrix[i, n];
for (int j = i + 1; j < n; j++)
{
result[i] -= matrix[i, j] * result[j];
}
result[i] /= matrix[i, i];
}
return result;
}
public static double GetParabolaValue(double x, double a, double b, double c)
{
return a * x * x + b * x + c;
}
}
}