From 0b108f56b2d0c35d01ee361dc593119ac52a14e1 Mon Sep 17 00:00:00 2001
From: lx <ex_lixiang17@cosl.com.cn>
Date: 星期五, 05 九月 2025 16:39:13 +0800
Subject: [PATCH] update
---
ErrorAnalysis.Service/Utility.cs | 318 +++++++++++++++++++++++++++++++++++++++++++++++++++++
1 files changed, 318 insertions(+), 0 deletions(-)
diff --git a/ErrorAnalysis.Service/Utility.cs b/ErrorAnalysis.Service/Utility.cs
index 6c10062..66b5738 100644
--- a/ErrorAnalysis.Service/Utility.cs
+++ b/ErrorAnalysis.Service/Utility.cs
@@ -1,5 +1,6 @@
锘縰sing System;
using System.Collections.Generic;
+using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
@@ -23,5 +24,322 @@
double y = y0 + (value - x0) * (y1 - y0) / (x1 - x0);
return y;
}
+
+ public static (double slope, double intercept) FitLine(PointF[] points)
+ {
+ // 璁$畻鍚勬眰鍜岄」
+ int n = points.Length;
+ double sumX = 0, sumY = 0, sumXY = 0, sumX2 = 0;
+
+ foreach (var p in points)
+ {
+ sumX += p.X;
+ sumY += p.Y;
+ sumXY += p.X * p.Y;
+ sumX2 += p.X * p.X;
+ }
+
+ // 璁$畻鏂滅巼鍜屾埅璺�
+ double denominator = n * sumX2 - sumX * sumX;
+ if (Math.Abs(denominator) < 1e-10) // 閬垮厤闄や互0
+ throw new InvalidOperationException("鐐归泦杩囦簬闆嗕腑锛屾棤娉曟嫙鍚堢洿绾�");
+
+ double slope = (n * sumXY - sumX * sumY) / denominator;
+ double intercept = (sumY - slope * sumX) / n;
+
+ return (slope, intercept);
+ }
+
+ public static double GetLineValue(double x, double slope, double intercept) => slope * x + intercept;
+
+ public static (double a, double b, double c) FitParabola(PointF[] points)
+ {
+ if (points.Length < 3)
+ throw new ArgumentException("鑷冲皯闇�瑕�3涓偣杩涜鎶涚墿绾挎嫙鍚�");
+
+ // 1. 璁$畻鍚勯」姹傚拰鍊糩1,6](@ref)
+ int n = points.Length;
+ double sx = 0, sy = 0, sx2 = 0, sx3 = 0, sx4 = 0, sxy = 0, sx2y = 0;
+
+ foreach (var p in points)
+ {
+ double x = p.X;
+ double y = p.Y;
+ double x2 = x * x;
+ double x3 = x2 * x;
+ double x4 = x2 * x2;
+
+ sx += x;
+ sy += y;
+ sx2 += x2;
+ sx3 += x3;
+ sx4 += x4;
+ sxy += x * y;
+ sx2y += x2 * y;
+ }
+
+ // 2. 鏋勫缓姝h鏂圭▼鐭╅樀[1,6](@ref)
+ double[,] matrix = {
+ { sx4, sx3, sx2, sx2y },
+ { sx3, sx2, sx, sxy },
+ { sx2, sx, n, sy }
+ };
+
+ // 3. 浣跨敤楂樻柉娑堝厓娉曟眰瑙�
+ double[] coefficients = GaussElimination(matrix);
+
+ return (coefficients[0], coefficients[1], coefficients[2]);
+ }
+
+ // 楂樻柉娑堝厓娉曞疄鐜帮紙甯﹂儴鍒嗕富鍏冮�夋嫨锛�
+ private static double[] GaussElimination(double[,] matrix)
+ {
+ int n = matrix.GetLength(0);
+ double[] result = new double[n];
+
+ // 鍓嶅悜娑堝厓
+ for (int i = 0; i < n - 1; i++)
+ {
+ // 閮ㄥ垎涓诲厓閫夋嫨
+ int maxRow = i;
+ for (int k = i + 1; k < n; k++)
+ {
+ if (Math.Abs(matrix[k, i]) > Math.Abs(matrix[maxRow, i]))
+ maxRow = k;
+ }
+
+ // 琛屼氦鎹�
+ if (maxRow != i)
+ {
+ for (int j = 0; j <= n; j++)
+ {
+ double temp = matrix[i, j];
+ matrix[i, j] = matrix[maxRow, j];
+ matrix[maxRow, j] = temp;
+ }
+ }
+
+ // 娑堝厓杩囩▼
+ for (int k = i + 1; k < n; k++)
+ {
+ double factor = matrix[k, i] / matrix[i, i];
+ for (int j = i; j <= n; j++)
+ {
+ matrix[k, j] -= factor * matrix[i, j];
+ }
+ }
+ }
+
+ // 鍥炰唬姹傝В
+ for (int i = n - 1; i >= 0; i--)
+ {
+ result[i] = matrix[i, n];
+ for (int j = i + 1; j < n; j++)
+ {
+ result[i] -= matrix[i, j] * result[j];
+ }
+ result[i] /= matrix[i, i];
+ }
+
+ return result;
+ }
+
+ public static (double a, double b, double c) quadraticLine(double[] arrX, double[] arrY)
+ {
+ double[] coef = new double[3];
+ double[,] AA = new double[3, 3];
+ double[,] TAA = new double[3, 3];
+ double[,] BAA = new double[3, 1];
+ double[] B = new double[3];
+ int m = arrX.Length;
+
+ double[] arrXp = new double[m];
+ double[] arrXc = new double[m];
+ double[] arrXv = new double[m];
+ double[] y = new double[m];
+
+ for (int i = 0; i < m; i++)
+ {
+ arrXp[i] = arrX[i] * arrX[i];
+ }
+ for (int i = 0; i < m; i++)
+ {
+ arrXc[i] = arrX[i] * arrX[i] * arrX[i];
+ }
+ for (int i = 0; i < m; i++)
+ {
+ arrXv[i] = arrX[i] * arrX[i] * arrX[i] * arrX[i];
+ }
+ double a1 = mysum(arrX);
+ double a2 = mysum(arrXp);
+ double a3 = mysum(arrXc);
+ double a4 = mysum(arrXv);
+
+ AA[0, 0] = m;
+ AA[0, 1] = a1;
+ AA[0, 2] = a2;
+ AA[1, 0] = a1;
+ AA[1, 1] = a2;
+ AA[1, 2] = a3;
+ AA[2, 0] = a2;
+ AA[2, 1] = a3;
+ AA[2, 2] = a4;
+ double[] xy = new double[m];
+ double[] xxy = new double[m];
+ for (int i = 0; i < m; i++)
+ {
+ xy[i] = arrX[i] * arrY[i];
+ }
+ for (int i = 0; i < m; i++)
+ {
+ xxy[i] = arrX[i] * arrX[i] * arrY[i];
+ }
+ double b1 = mysum(arrY);
+ double b2 = mysum(xy);
+ double b3 = mysum(xxy);
+ B[0] = b1;
+ B[1] = b2;
+ B[2] = b3;
+ TAA = ReverseMatrix(AA, 3);
+ for (int i = 0; i < 3; i++)
+ {
+ for (int j = 0; j < 3; j++)
+ {
+ coef[i] = coef[i] + TAA[i, j] * B[j];
+ }
+ }
+ return (coef[2], coef[1], coef[0]);
+
+ }
+
+ public static double[,] ReverseMatrix(double[,] dMatrix, int Level)
+ {
+ double dMatrixValue = MatrixValue(dMatrix, Level);
+ if (dMatrixValue == 0) return null;
+ double[,] dReverseMatrix = new double[Level, 2 * Level];
+ double x, c;
+ // Init Reverse matrix
+ for (int i = 0; i < Level; i++)
+ {
+ for (int j = 0; j < 2 * Level; j++)
+ {
+ if (j < Level)
+ dReverseMatrix[i, j] = dMatrix[i, j];
+ else
+ dReverseMatrix[i, j] = 0;
+ }
+ dReverseMatrix[i, Level + i] = 1;
+ }
+ for (int i = 0, j = 0; i < Level && j < Level; i++, j++)
+ {
+ if (dReverseMatrix[i, j] == 0)
+ {
+ int m = i;
+ for (; dMatrix[m, j] == 0; m++) ;
+ if (m == Level)
+ return null;
+ else
+ {
+ // Add i-row with m-row
+ for (int n = j; n < 2 * Level; n++)
+ dReverseMatrix[i, n] += dReverseMatrix[m, n];
+ }
+ }
+ // Format the i-row with "1" start
+ x = dReverseMatrix[i, j];
+ if (x != 1)
+ {
+ for (int n = j; n < 2 * Level; n++)
+ if (dReverseMatrix[i, n] != 0)
+ dReverseMatrix[i, n] /= x;
+ }
+ // Set 0 to the current column in the rows after current row
+ for (int s = Level - 1; s > i; s--)
+ {
+ x = dReverseMatrix[s, j];
+ for (int t = j; t < 2 * Level; t++)
+ dReverseMatrix[s, t] -= (dReverseMatrix[i, t] * x);
+ }
+ }
+ // Format the first matrix into unit-matrix
+ for (int i = Level - 2; i >= 0; i--)
+ {
+ for (int j = i + 1; j < Level; j++)
+ if (dReverseMatrix[i, j] != 0)
+ {
+ c = dReverseMatrix[i, j];
+ for (int n = j; n < 2 * Level; n++)
+ dReverseMatrix[i, n] -= (c * dReverseMatrix[j, n]);
+ }
+ }
+ double[,] dReturn = new double[Level, Level];
+ for (int i = 0; i < Level; i++)
+ for (int j = 0; j < Level; j++)
+ dReturn[i, j] = dReverseMatrix[i, j + Level];
+ return dReturn;
+ }
+ private static double MatrixValue(double[,] MatrixList, int Level)
+ {
+ double[,] dMatrix = new double[Level, Level];
+ for (int i = 0; i < Level; i++)
+ for (int j = 0; j < Level; j++)
+ dMatrix[i, j] = MatrixList[i, j];
+ double c, x;
+ int k = 1;
+ for (int i = 0, j = 0; i < Level && j < Level; i++, j++)
+ {
+ if (dMatrix[i, j] == 0)
+ {
+ int m = i;
+ for (; dMatrix[m, j] == 0; m++) ;
+ if (m == Level)
+ return 0;
+ else
+ {
+ // Row change between i-row and m-row
+ for (int n = j; n < Level; n++)
+ {
+ c = dMatrix[i, n];
+ dMatrix[i, n] = dMatrix[m, n];
+ dMatrix[m, n] = c;
+ }
+ // Change value pre-value
+ k *= (-1);
+ }
+ }
+ // Set 0 to the current column in the rows after current row
+ for (int s = Level - 1; s > i; s--)
+ {
+ x = dMatrix[s, j];
+ for (int t = j; t < Level; t++)
+ dMatrix[s, t] -= dMatrix[i, t] * (x / dMatrix[i, j]);
+ }
+ }
+ double sn = 1;
+ for (int i = 0; i < Level; i++)
+ {
+ if (dMatrix[i, i] != 0)
+ sn *= dMatrix[i, i];
+ else
+ return 0;
+ }
+ return k * sn;
+ }
+
+ public static double mysum(double[] XX)
+ {
+ double reout = 0;
+ int mm = XX.Length;
+ for (int i = 0; i < mm; i++)
+ {
+ reout = reout + XX[i];
+ }
+ return reout;
+ }
+
+ public static double GetParabolaValue(double x, double a, double b, double c)
+ {
+ return a * x * x + b * x + c;
+ }
}
}
--
Gitblit v1.9.3