| | |
| | | using System; |
| | | using System.Collections.Generic; |
| | | using System.Drawing; |
| | | using System.Linq; |
| | | using System.Text; |
| | | using System.Threading.Tasks; |
| | |
| | | double y = y0 + (value - x0) * (y1 - y0) / (x1 - x0); |
| | | return y; |
| | | } |
| | | |
| | | public static (double slope, double intercept) FitLine(PointF[] points) |
| | | { |
| | | // 计算各求和项 |
| | | int n = points.Length; |
| | | double sumX = 0, sumY = 0, sumXY = 0, sumX2 = 0; |
| | | |
| | | foreach (var p in points) |
| | | { |
| | | sumX += p.X; |
| | | sumY += p.Y; |
| | | sumXY += p.X * p.Y; |
| | | sumX2 += p.X * p.X; |
| | | } |
| | | |
| | | // 计算斜率和截距 |
| | | double denominator = n * sumX2 - sumX * sumX; |
| | | if (Math.Abs(denominator) < 1e-10) // 避免除以0 |
| | | throw new InvalidOperationException("点集过于集中,无法拟合直线"); |
| | | |
| | | double slope = (n * sumXY - sumX * sumY) / denominator; |
| | | double intercept = (sumY - slope * sumX) / n; |
| | | |
| | | return (slope, intercept); |
| | | } |
| | | |
| | | public static double GetLineValue(double x, double slope, double intercept) => slope * x + intercept; |
| | | |
| | | public static (double a, double b, double c) FitParabola(PointF[] points) |
| | | { |
| | | if (points.Length < 3) |
| | | throw new ArgumentException("至少需要3个点进行抛物线拟合"); |
| | | |
| | | // 1. 计算各项求和值[1,6](@ref) |
| | | int n = points.Length; |
| | | double sx = 0, sy = 0, sx2 = 0, sx3 = 0, sx4 = 0, sxy = 0, sx2y = 0; |
| | | |
| | | foreach (var p in points) |
| | | { |
| | | double x = p.X; |
| | | double y = p.Y; |
| | | double x2 = x * x; |
| | | double x3 = x2 * x; |
| | | double x4 = x2 * x2; |
| | | |
| | | sx += x; |
| | | sy += y; |
| | | sx2 += x2; |
| | | sx3 += x3; |
| | | sx4 += x4; |
| | | sxy += x * y; |
| | | sx2y += x2 * y; |
| | | } |
| | | |
| | | // 2. 构建正规方程矩阵[1,6](@ref) |
| | | double[,] matrix = { |
| | | { sx4, sx3, sx2, sx2y }, |
| | | { sx3, sx2, sx, sxy }, |
| | | { sx2, sx, n, sy } |
| | | }; |
| | | |
| | | // 3. 使用高斯消元法求解 |
| | | double[] coefficients = GaussElimination(matrix); |
| | | |
| | | return (coefficients[0], coefficients[1], coefficients[2]); |
| | | } |
| | | |
| | | // 高斯消元法实现(带部分主元选择) |
| | | private static double[] GaussElimination(double[,] matrix) |
| | | { |
| | | int n = matrix.GetLength(0); |
| | | double[] result = new double[n]; |
| | | |
| | | // 前向消元 |
| | | for (int i = 0; i < n - 1; i++) |
| | | { |
| | | // 部分主元选择 |
| | | int maxRow = i; |
| | | for (int k = i + 1; k < n; k++) |
| | | { |
| | | if (Math.Abs(matrix[k, i]) > Math.Abs(matrix[maxRow, i])) |
| | | maxRow = k; |
| | | } |
| | | |
| | | // 行交换 |
| | | if (maxRow != i) |
| | | { |
| | | for (int j = 0; j <= n; j++) |
| | | { |
| | | double temp = matrix[i, j]; |
| | | matrix[i, j] = matrix[maxRow, j]; |
| | | matrix[maxRow, j] = temp; |
| | | } |
| | | } |
| | | |
| | | // 消元过程 |
| | | for (int k = i + 1; k < n; k++) |
| | | { |
| | | double factor = matrix[k, i] / matrix[i, i]; |
| | | for (int j = i; j <= n; j++) |
| | | { |
| | | matrix[k, j] -= factor * matrix[i, j]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | // 回代求解 |
| | | for (int i = n - 1; i >= 0; i--) |
| | | { |
| | | result[i] = matrix[i, n]; |
| | | for (int j = i + 1; j < n; j++) |
| | | { |
| | | result[i] -= matrix[i, j] * result[j]; |
| | | } |
| | | result[i] /= matrix[i, i]; |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | public static (double a, double b, double c) quadraticLine(double[] arrX, double[] arrY) |
| | | { |
| | | double[] coef = new double[3]; |
| | | double[,] AA = new double[3, 3]; |
| | | double[,] TAA = new double[3, 3]; |
| | | double[,] BAA = new double[3, 1]; |
| | | double[] B = new double[3]; |
| | | int m = arrX.Length; |
| | | |
| | | double[] arrXp = new double[m]; |
| | | double[] arrXc = new double[m]; |
| | | double[] arrXv = new double[m]; |
| | | double[] y = new double[m]; |
| | | |
| | | for (int i = 0; i < m; i++) |
| | | { |
| | | arrXp[i] = arrX[i] * arrX[i]; |
| | | } |
| | | for (int i = 0; i < m; i++) |
| | | { |
| | | arrXc[i] = arrX[i] * arrX[i] * arrX[i]; |
| | | } |
| | | for (int i = 0; i < m; i++) |
| | | { |
| | | arrXv[i] = arrX[i] * arrX[i] * arrX[i] * arrX[i]; |
| | | } |
| | | double a1 = mysum(arrX); |
| | | double a2 = mysum(arrXp); |
| | | double a3 = mysum(arrXc); |
| | | double a4 = mysum(arrXv); |
| | | |
| | | AA[0, 0] = m; |
| | | AA[0, 1] = a1; |
| | | AA[0, 2] = a2; |
| | | AA[1, 0] = a1; |
| | | AA[1, 1] = a2; |
| | | AA[1, 2] = a3; |
| | | AA[2, 0] = a2; |
| | | AA[2, 1] = a3; |
| | | AA[2, 2] = a4; |
| | | double[] xy = new double[m]; |
| | | double[] xxy = new double[m]; |
| | | for (int i = 0; i < m; i++) |
| | | { |
| | | xy[i] = arrX[i] * arrY[i]; |
| | | } |
| | | for (int i = 0; i < m; i++) |
| | | { |
| | | xxy[i] = arrX[i] * arrX[i] * arrY[i]; |
| | | } |
| | | double b1 = mysum(arrY); |
| | | double b2 = mysum(xy); |
| | | double b3 = mysum(xxy); |
| | | B[0] = b1; |
| | | B[1] = b2; |
| | | B[2] = b3; |
| | | TAA = ReverseMatrix(AA, 3); |
| | | for (int i = 0; i < 3; i++) |
| | | { |
| | | for (int j = 0; j < 3; j++) |
| | | { |
| | | coef[i] = coef[i] + TAA[i, j] * B[j]; |
| | | } |
| | | } |
| | | return (coef[2], coef[1], coef[0]); |
| | | |
| | | } |
| | | |
| | | public static double[,] ReverseMatrix(double[,] dMatrix, int Level) |
| | | { |
| | | double dMatrixValue = MatrixValue(dMatrix, Level); |
| | | if (dMatrixValue == 0) return null; |
| | | double[,] dReverseMatrix = new double[Level, 2 * Level]; |
| | | double x, c; |
| | | // Init Reverse matrix |
| | | for (int i = 0; i < Level; i++) |
| | | { |
| | | for (int j = 0; j < 2 * Level; j++) |
| | | { |
| | | if (j < Level) |
| | | dReverseMatrix[i, j] = dMatrix[i, j]; |
| | | else |
| | | dReverseMatrix[i, j] = 0; |
| | | } |
| | | dReverseMatrix[i, Level + i] = 1; |
| | | } |
| | | for (int i = 0, j = 0; i < Level && j < Level; i++, j++) |
| | | { |
| | | if (dReverseMatrix[i, j] == 0) |
| | | { |
| | | int m = i; |
| | | for (; dMatrix[m, j] == 0; m++) ; |
| | | if (m == Level) |
| | | return null; |
| | | else |
| | | { |
| | | // Add i-row with m-row |
| | | for (int n = j; n < 2 * Level; n++) |
| | | dReverseMatrix[i, n] += dReverseMatrix[m, n]; |
| | | } |
| | | } |
| | | // Format the i-row with "1" start |
| | | x = dReverseMatrix[i, j]; |
| | | if (x != 1) |
| | | { |
| | | for (int n = j; n < 2 * Level; n++) |
| | | if (dReverseMatrix[i, n] != 0) |
| | | dReverseMatrix[i, n] /= x; |
| | | } |
| | | // Set 0 to the current column in the rows after current row |
| | | for (int s = Level - 1; s > i; s--) |
| | | { |
| | | x = dReverseMatrix[s, j]; |
| | | for (int t = j; t < 2 * Level; t++) |
| | | dReverseMatrix[s, t] -= (dReverseMatrix[i, t] * x); |
| | | } |
| | | } |
| | | // Format the first matrix into unit-matrix |
| | | for (int i = Level - 2; i >= 0; i--) |
| | | { |
| | | for (int j = i + 1; j < Level; j++) |
| | | if (dReverseMatrix[i, j] != 0) |
| | | { |
| | | c = dReverseMatrix[i, j]; |
| | | for (int n = j; n < 2 * Level; n++) |
| | | dReverseMatrix[i, n] -= (c * dReverseMatrix[j, n]); |
| | | } |
| | | } |
| | | double[,] dReturn = new double[Level, Level]; |
| | | for (int i = 0; i < Level; i++) |
| | | for (int j = 0; j < Level; j++) |
| | | dReturn[i, j] = dReverseMatrix[i, j + Level]; |
| | | return dReturn; |
| | | } |
| | | private static double MatrixValue(double[,] MatrixList, int Level) |
| | | { |
| | | double[,] dMatrix = new double[Level, Level]; |
| | | for (int i = 0; i < Level; i++) |
| | | for (int j = 0; j < Level; j++) |
| | | dMatrix[i, j] = MatrixList[i, j]; |
| | | double c, x; |
| | | int k = 1; |
| | | for (int i = 0, j = 0; i < Level && j < Level; i++, j++) |
| | | { |
| | | if (dMatrix[i, j] == 0) |
| | | { |
| | | int m = i; |
| | | for (; dMatrix[m, j] == 0; m++) ; |
| | | if (m == Level) |
| | | return 0; |
| | | else |
| | | { |
| | | // Row change between i-row and m-row |
| | | for (int n = j; n < Level; n++) |
| | | { |
| | | c = dMatrix[i, n]; |
| | | dMatrix[i, n] = dMatrix[m, n]; |
| | | dMatrix[m, n] = c; |
| | | } |
| | | // Change value pre-value |
| | | k *= (-1); |
| | | } |
| | | } |
| | | // Set 0 to the current column in the rows after current row |
| | | for (int s = Level - 1; s > i; s--) |
| | | { |
| | | x = dMatrix[s, j]; |
| | | for (int t = j; t < Level; t++) |
| | | dMatrix[s, t] -= dMatrix[i, t] * (x / dMatrix[i, j]); |
| | | } |
| | | } |
| | | double sn = 1; |
| | | for (int i = 0; i < Level; i++) |
| | | { |
| | | if (dMatrix[i, i] != 0) |
| | | sn *= dMatrix[i, i]; |
| | | else |
| | | return 0; |
| | | } |
| | | return k * sn; |
| | | } |
| | | |
| | | public static double mysum(double[] XX) |
| | | { |
| | | double reout = 0; |
| | | int mm = XX.Length; |
| | | for (int i = 0; i < mm; i++) |
| | | { |
| | | reout = reout + XX[i]; |
| | | } |
| | | return reout; |
| | | } |
| | | |
| | | public static double GetParabolaValue(double x, double a, double b, double c) |
| | | { |
| | | return a * x * x + b * x + c; |
| | | } |
| | | } |
| | | } |