| | |
| | | using System; |
| | | using System.Collections.Generic; |
| | | using System.Drawing; |
| | | using System.Linq; |
| | | using System.Text; |
| | | using System.Threading.Tasks; |
| | |
| | | return y; |
| | | } |
| | | |
| | | |
| | | public static (double, double) InterpolateBySw(double c, double o, double sw) |
| | | public static (double slope, double intercept) FitLine(PointF[] points) |
| | | { |
| | | var cRes = (100 - sw) / 100 * c; |
| | | var oRes = sw / 100 * o; |
| | | return (cRes, oRes); |
| | | // 计算各求和项 |
| | | int n = points.Length; |
| | | double sumX = 0, sumY = 0, sumXY = 0, sumX2 = 0; |
| | | |
| | | foreach (var p in points) |
| | | { |
| | | sumX += p.X; |
| | | sumY += p.Y; |
| | | sumXY += p.X * p.Y; |
| | | sumX2 += p.X * p.X; |
| | | } |
| | | |
| | | // 计算斜率和截距 |
| | | double denominator = n * sumX2 - sumX * sumX; |
| | | if (Math.Abs(denominator) < 1e-10) // 避免除以0 |
| | | throw new InvalidOperationException("点集过于集中,无法拟合直线"); |
| | | |
| | | double slope = (n * sumXY - sumX * sumY) / denominator; |
| | | double intercept = (sumY - slope * sumX) / n; |
| | | |
| | | return (slope, intercept); |
| | | } |
| | | |
| | | public static double GetLineValue(double x, double slope, double intercept) => slope * x + intercept; |
| | | |
| | | public static (double a, double b, double c) FitParabola(PointF[] points) |
| | | { |
| | | if (points.Length < 3) |
| | | throw new ArgumentException("至少需要3个点进行抛物线拟合"); |
| | | |
| | | // 1. 计算各项求和值[1,6](@ref) |
| | | int n = points.Length; |
| | | double sx = 0, sy = 0, sx2 = 0, sx3 = 0, sx4 = 0, sxy = 0, sx2y = 0; |
| | | |
| | | foreach (var p in points) |
| | | { |
| | | double x = p.X; |
| | | double y = p.Y; |
| | | double x2 = x * x; |
| | | double x3 = x2 * x; |
| | | double x4 = x2 * x2; |
| | | |
| | | sx += x; |
| | | sy += y; |
| | | sx2 += x2; |
| | | sx3 += x3; |
| | | sx4 += x4; |
| | | sxy += x * y; |
| | | sx2y += x2 * y; |
| | | } |
| | | |
| | | // 2. 构建正规方程矩阵[1,6](@ref) |
| | | double[,] matrix = { |
| | | { sx4, sx3, sx2, sx2y }, |
| | | { sx3, sx2, sx, sxy }, |
| | | { sx2, sx, n, sy } |
| | | }; |
| | | |
| | | // 3. 使用高斯消元法求解 |
| | | double[] coefficients = GaussElimination(matrix); |
| | | |
| | | return (coefficients[0], coefficients[1], coefficients[2]); |
| | | } |
| | | |
| | | // 高斯消元法实现(带部分主元选择) |
| | | private static double[] GaussElimination(double[,] matrix) |
| | | { |
| | | int n = matrix.GetLength(0); |
| | | double[] result = new double[n]; |
| | | |
| | | // 前向消元 |
| | | for (int i = 0; i < n - 1; i++) |
| | | { |
| | | // 部分主元选择 |
| | | int maxRow = i; |
| | | for (int k = i + 1; k < n; k++) |
| | | { |
| | | if (Math.Abs(matrix[k, i]) > Math.Abs(matrix[maxRow, i])) |
| | | maxRow = k; |
| | | } |
| | | |
| | | // 行交换 |
| | | if (maxRow != i) |
| | | { |
| | | for (int j = 0; j <= n; j++) |
| | | { |
| | | double temp = matrix[i, j]; |
| | | matrix[i, j] = matrix[maxRow, j]; |
| | | matrix[maxRow, j] = temp; |
| | | } |
| | | } |
| | | |
| | | // 消元过程 |
| | | for (int k = i + 1; k < n; k++) |
| | | { |
| | | double factor = matrix[k, i] / matrix[i, i]; |
| | | for (int j = i; j <= n; j++) |
| | | { |
| | | matrix[k, j] -= factor * matrix[i, j]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | // 回代求解 |
| | | for (int i = n - 1; i >= 0; i--) |
| | | { |
| | | result[i] = matrix[i, n]; |
| | | for (int j = i + 1; j < n; j++) |
| | | { |
| | | result[i] -= matrix[i, j] * result[j]; |
| | | } |
| | | result[i] /= matrix[i, i]; |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | public static double GetParabolaValue(double x, double a, double b, double c) |
| | | { |
| | | return a * x * x + b * x + c; |
| | | } |
| | | } |
| | | } |